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Abstract. Ensuring accessibility for individuals with cognitive im-
pairments is essential for autonomy, self-determination, and full cit-
izenship. However, manual Easy-to-Read (ETR) text adaptations are
slow, costly, and difficult to scale, limiting access to crucial informa-
tion in healthcare, education, and civic life. AI-driven ETR gener-
ation offers a scalable solution but faces key challenges, including
dataset scarcity, domain adaptation, and balancing frugal learning
with Large Language Models (LLMs). In this paper, we introduce
ETR-fr, the first dataset for ETR text generation fully compliant with
European ETR guidelines. We implement parameter-efficient fine-
tuning on PLMs and LLMs to establish strong generative baselines.
And, to ensure high-quality accessible outputs, we propose a rigor-
ous evaluation framework, combining automated metrics with man-
ual assessment based on a 36-question evaluation form following the
European guidelines. Overall results show that PLMs perform on par
with LLMs and effectively adapt to out-of-domain texts.3

1 Introduction4

Figure 1. Extract of the Easy-to-Read book Twenty Thousand Leagues
Under the Seas by Jules Verne from François Baudez Publishing. The

original document is in French, but we translated it into English to ease
comprehension. Left page is the original text with an illustration. Right

page is the ETR transcription with the main information plus its captioned
vignettes. We have highlighted and numbered the paragraphs to show the

matches between the original and the ETR versions.

In line with global initiatives like the United Nations Sustainable5

Development Goals1 and the Leave No One Behind Principle2, en-6

suring accessibility for individuals with cognitive impairments is es-7

sential to foster autonomy, self-determination, and full citizenship.8

Individuals with intellectual disabilities deserve equal rights to par-9

ticipate in society, make informed choices, and engage fully in their10

1 https://sdgs.un.org/goals
2 https://unsdg.un.org/2030-agenda/universal-values/leave-no-one-behind

communities. However, they continue to face significant obstacles, 11

especially in accessing written information, which is essential for 12

healthcare, education, employment, and civic engagement. Mental 13

health disorders and intellectual disabilities affect millions world- 14

wide, with an estimated 1.3% of the global population experiencing 15

significant cognitive challenges [33]. In Europe alone, 4.2 million in- 16

dividuals are affected, while in France, between 650,000 and 700,000 17

people live with intellectual disabilities, including thousands of chil- 18

dren born each year with conditions that impact their ability to com- 19

prehend written materials [11]. 20

Easy-to-Read (ETR) is a well-established method for simplify- 21

ing complex documents, ensuring that people with cognitive impair- 22

ments can understand and use key information autonomously [37]. 23

European organizations and institutions, including France’s National 24

Solidarity Fund for Autonomy3, are increasingly producing simpli- 25

fied materials, indicating growing recognition of its value in improv- 26

ing accessibility for diverse populations. However, the current man- 27

ual adaptation process is slow, costly, and subject to strict certifica- 28

tion requirements, making it difficult to scale [6]. 29

Developing effective AI-driven accessibility tools comes with sev- 30

eral challenges. One major obstacle is the construction of high- 31

quality datasets, ensuring that AI models learn to generate clear and 32

meaningful adapted texts. Additionally, a balance must be struck be- 33

tween frugal learning approaches which enable low-resource, effi- 34

cient adaptation and large language model (LLM) based techniques, 35

which leverage extensive linguistic knowledge for high-quality text 36

simplification. Open-source development ensures transparency and 37

collaboration while empowering individuals to customize solutions 38

and fully participate as equal citizens. 39

Generating high-quality ETR texts is challenging due to the need 40

for linguistic simplification and strict adherence to accessibility 41

guidelines. To address these challenges, we introduce ETR-fr, the 42

first dataset specifically designed for ETR text generation tailored to 43

cognitively disabled users. This dataset comprises 523 aligned text 44

pairs and fully complies with European ETR guidelines. We develop 45

robust generative models using parameter-efficient fine-tuning strate- 46

gies, such as prefix-tuning [23] and Low-Rank Adaptation (LoRA) 47

[13] applied to frugal backbones like mBART [27] and mBARThez 48

[17], as well as large language models like Mistral-7B [16] and 49

Llama-2-7B [39]. On the other hand, to ensure the highest qual- 50

ity in generating accessible texts, rigorous evaluation is essential. 51

The different generative models undergo intrinsic evaluation using 52

a comprehensive set of metrics derived from text simplification and 53

text summarization. However, given the critical need for clarity, co- 54

herence, and accessibility in this context, manual evaluation plays a 55

central role. Our main contributions are summarized as follows: 56

• Introduction of ETR-fr, the first dataset fully compliant with Eu- 57

ropean ETR guidelines, designed for ETR text generation tailored 58

to cognitively disabled users. 59

3 https://www.cnsa.fr/
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• Implementation of parameter-efficient fine-tuning strategies, such60

as prefix-tuning and LoRA, applied to frugal backbones and61

LLMs.62

• Comprehensive evaluation framework using intrinsic metrics from63

text simplification and summarization, complemented by a 36-64

question manual assessment based on European ETR guidelines.65

• Investigation of model’s ability to generalize ETR text generation66

from our ETR-fr to sources beyond its training data, showing that67

it can effectively handle a wide range of content, including politi-68

cally focused materials.69

2 Easy-to-Read Framework70

Creating accessible texts for individuals with cognitive disabilities71

follows the Easy-to-Read framework, which adapts content to align72

with the European Easy-to-Read guidelines [37] (see example in Fig-73

ure 1). The key principles are outlined as follows.74

Clear and simple language: Use everyday vocabulary, avoiding75

technical jargon. Sentences should be short, direct, and in active76

voice to specify who is performing an action. Each sentence should77

convey only one idea, and consistent terminology should be used78

throughout the text.79

Examples and analogies: Provide concrete examples and relat-80

able analogies to explain abstract or complex ideas, linking them to81

familiar situations for better comprehension.82

Structure and organization: Arrange content into clearly defined83

sections with descriptive headings and subheadings. Information84

should follow a logical sequence, grouping related concepts while85

avoiding lengthy paragraphs. Important points should be highlighted86

using lists where appropriate.87

Accessible content: Begin with a summary outlining key points in88

simple terms. If technical terms are necessary, introduce clear defi-89

nitions. For complex concepts or procedures, explain each step sys-90

tematically with concrete examples.91

Visuals and illustrations: Incorporate relevant images, charts, or92

diagrams to reinforce key messages. Visuals should be simple, di-93

rectly connected to the text, and include concise explanatory cap-94

tions.95

Following the ETR guidelines, ensuring the validity of ETR con-96

tent requires approval from both experts and the target audience. The97

manual ETR transcription process involves summarizing content and98

simplifying it through an iterative collaboration between human ex-99

perts and individuals with cognitive impairments. This co-creation100

process is essential for obtaining the official European ETR label4.101

3 Related Work102

Automating ETR generation could significantly streamline document103

creation and bridge the digital divide. However, research in this area104

remains scarce to the exception of very few studies mainly endeav-105

ored in Europe [4, 32]. In contrast, related fields such as text simplifi-106

cation [1, 24] and text summarization [43] have been widely studied.107

Within the natural language processing field, various studies108

and tools have been developed to support individuals with cogni-109

tive disabilities by enhancing augmentative communication methods110

[31, 34], with dialogue agents being a widely explored solution [14]111

4 https://www.inclusion-europe.eu/wp-content/uploads/2021/02/
How-to-use-ETR-logo..pdf

Within the context of inclusive text generation, [10] introduced an 112

email-writing interface based on the LaMDA LLM, offering features 113

such as summarization, subject line generation, and text revision. 114

However, human evaluation indicates that current LLMs still fall 115

short in accuracy and quality for dyslexic users, highlighting the need 116

for further research. In French, the Hector system [38] integrates 117

word embeddings with rule-based methods for dyslexia-friendly text 118

adaptation. While syntactic transformations improve readability, re- 119

sults show a decline in performance at the discourse and lexical lev- 120

els. 121

With respect to the specific domain of ETR generation, a Finnish 122

study [7] created a dataset aligning news articles with their Easy 123

Finnish (selkosuomi) versions through automatic alignment. How- 124

ever, the authors acknowledge potential inaccuracies in text pairing 125

and note that Easy Finnish does not strictly adhere to ETR guide- 126

lines. Additionally, they introduce baseline models for ETR sen- 127

tence generation using fine-tuned mBART and FinGPT [29]. Sim- 128

ilarly, the ClearText project [8] aims to develop the ClearSim cor- 129

pus for simplifying Spanish public administrative texts. The current 130

public version5 contains three ETR document pairs with 201 mis- 131

aligned pages, limiting its suitability for learning purposes. In par- 132

ticular, the project fully fine-tunes a Spanish T5 model, with plans 133

to expand to 18,000 texts—15,000 generated by ChatGPT and 3,000 134

transcribed by experts. More recently, [32] introduced an automat- 135

ically aligned Spanish ETR corpus alongside a fine-tuned Llama- 136

2-7B model. An expert-led evaluation highlights progress in ac- 137

cessibility and underscores ongoing challenges in producing high- 138

quality, guideline-compliant document-level generation. This study 139

highlights the challenges of cross-lingual transfer, demonstrating that 140

the translate-simplify-retranslate strategy often leads to incorrect or 141

untranslated outputs. 142

Although these initiatives reflect a growing interest in ETR gener- 143

ation, they highlight the absence of high-quality resources that fully 144

adhere to European ETR guidelines. To address this gap, we intro- 145

duce ETR-fr, the first expert-transcribed ETR dataset specifically de- 146

signed for users with cognitive disabilities. 147

4 ETR-fr Dataset 148

While there are datasets for text simplification and text summariza- 149

tion [9, 12, 17, 26], there is still a lack of high-quality document- 150

aligned corpora for ETR generation in the general case and for the 151

French language in specific. 152

To address this gap, the ETR-fr dataset is derived from children’s 153

books in the Easy-to-Read-and-Understand6 collection by François 154

Baudez Publishing7. This collection, designed for readers with cog- 155

nitive impairments, consists of eleven books transcribed into ETR 156

following European guidelines. Each book presents the original text 157

on the left page and its ETR transcription on the right, as illustrated in 158

Figure 1. From the eleven books, we extracted 523 aligned page pairs 159

(source, target), where the source represents the original text and the 160

target its ETR transcription, forming the ETR-fr dataset. Table 1 pro- 161

vides the key ETR-fr dataset attributes including readability indices 162

KMRE [18] and LIX [2], compression ratios, and novelty percent- 163

ages. On average, ETR-fr achieves a 50.05% compression rate, re- 164

ducing token count by 56.61 and sentence count by 2.17. The average 165

novelty rate [35] is 53.80%, reflecting the proportion of newly intro- 166

duced unigrams in target texts. Readability improves by 7.51 points 167

5 https://github.com/gplsi/corpus-cleartext-cas-v1.0/tree/main
6 Known in French as Facile à Lire et à Comprendre.
7 http://www.yvelinedition.fr/Facile-a-lire
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Table 1. Statistics between ETR-fr, OrangeSum, Alector, Finnish-Easy and ClearSim datasets. Compression and novelty ratios are not given for ClearSim as
the publicly available version is not aligned. The LIX readability index is used instead of KMRE for Finnish-Easy and ClearSim as it is language-independent.

Results are given on average with corresponding standard deviation over documents.

French Finnish and Spanish

ETR-fr (ours) Alector OrangeSum Finnish-Easy ClearSim

Dataset size 523 79 24,401 1587 207

Vocabulary size
source 4547 3129 80,295 98,833 6067

target 1765 2538 23,092 18,934 2952

Num. of words
source 102.76±42.84 306.48±90.83 375.98±183.34 348.47±266.71 429.13±225.28

target 46.15±16.73 285.63±85.34 34.00±12.17 55.00±16.61 147.78±59.54

Num. of sentences
source 9.30±5.12 20.56±8.95 17.15±8.85 30.82±24.05 23.00±12.77

target 7.13±3.85 22.72±9.79 1.86±0.94 6.97±2.13 11.88±5.44

Sentence length
source 12.57±5.63 16.82±6.14 22.77±5.99 11.29±1.83 20.13±9.21

target 7.89±4.55 13.87±4.08 21.68±10.82 8.04±1.55 13.04±6.61

KMRE ↑
source 91.43±9.41 88.56±8.23 69.80±9.47 – –

target 98.94±10.60 95.25±7.15 68.32±16.07 – –

LIX ↓
source 33.59±8.72 39.06±9.44 49.95±7.90 67.44±5.82 59.12±8.89

target 26.89±9.68 34.19±8.27 50.39±13.43 58.12±8.47 45.30±10.24

Comp. ratio (%) 50.05±20.55 6.84±4.47 89.16±6.34 75.40±21.71 –

Novelty (%) 53.80±16.14 17.84±8.72 38.24±19.71 54.74±16.55 –

from source to ETR output. For training purposes, ETR-fr is split168

into three fixed subsets. The test set comprises two books selected169

to maximize diversity in text length, word count, sentence structure,170

compression, novelty, and readability. The remaining nine books are171

divided into training and validation sets via a stratified split. Table 2172

outlines these partitions.173

As ETR generation involves both text simplification and sum-174

marization, we explore its relationship with these tasks by com-175

paring key attributes of ETR-fr with Alector [9] and OrangeSum176

[17], two French-language datasets respectively built for text simpli-177

fication and summarization. As shown in Table 1, ETR-fr balances178

the features of OrangeSum, which exhibits a high compression rate179

(89.16%), and Alector, which has a lower reduction rate (6.84%).180

Unlike OrangeSum, where target texts have higher KMRE scores181

(indicating reduced readability), ETR-fr and Alector improve read-182

ability, with a 7.51 and 6.69 point increase, respectively. For nov-183

elty, ETR-fr (53.80%) introduces more new content than OrangeSum184

(38.24%) and Alector (17.84%), highlighting its distinct approach.185

Table 1 further compares ETR-fr with Easy-Finnish [7] and Clear-186

Sim [8] datasets. Unlike ETR-fr, which is explicitly tailored for187

cognitively impaired readers, these datasets target a broader audi-188

ence, focusing on news articles (Easy-Finnish) and administrative189

texts (ClearSim). Easy-Finnish demonstrates a higher compression190

rate (75.40%), akin to OrangeSum. However, both Easy-Finnish and191

ClearSim exhibit lower accessibility, with significantly higher LIX192

readability scores: +33.85 and +25.53 points for source texts and193

+31.23 and +18.41 points for targets, respectively. Notably, Easy-194

Finnish shares ETR’s high novelty ratio ( 54%), while ClearSim195

lacks compression and novelty metrics due to misalignment. Over-196

all, ETR-fr prioritizes high readability and novelty while maintain-197

ing moderate text compression, making it well-suited for users with198

cognitive disabilities.199

5 ETR Generation and Evaluation 200

To evaluate generation models on ETR-fr and establish baseline per- 201

formance, we design a learning benchmark that involves parameter- 202

efficient fine-tuning of frugal pre-trained language models (PLMs) 203

and LLMs. Our approach also incorporates a two-step pipeline com- 204

bining text simplification and summarization, mimicking human- 205

expert strategy. 206

5.1 Expert-Centric Configuration 207

ETR transcription is traditionally a two-step process, where experts 208

first summarize the source text before simplifying it. To emulate this 209

methodology, we propose an expert-centric pipeline inspired by [3], 210

which sequentially applies a document-level summarization model 211

followed by a sentence simplification model. For summarization, 212

we use the mBARThez encoder-decoder model trained on Orange- 213

Sum [17] and the summarized text is then processed by the MUSS 214

model [30], which applies sentence-level simplification using default 215

control tokens to generate the final ETR transcription. 216

5.2 Parameter-efficient Fine-tuning 217

To conduct ETR generation, we also investigate frugal parameter- 218

efficient fine-tuning (PEFT) of sequence-to-sequence models, which 219

are widely employed in the context of abstractive summarization and 220

text simplification, such as mBART [27] and mBARThez [17]. Ad- 221

ditionally, we explore the performance of LLMs, namely Mistral- 222

7B [16] and Llama-2-7B [39] under PEFT. 223

With the growing sophistication of PLMs and LLMs, reducing 224

computational costs while maintaining performance has become a 225

priority. This has led to the development of PEFT strategies, such as 226

prefix-tuning [23] and low-rank adaptation tuning [13]. These meth- 227

ods enable fine-tuning of only a small subset of parameters while 228

keeping most model weights frozen, thereby minimizing the risk of 229

catastrophic forgetting [41]. 230
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Table 2. Training, validation, and test splits of ETR-fr. Results are given on average with corresponding standard deviation over documents.

Train Validation Test

source target source target source target

Num. of texts 399 71 53

Num. of words 99.70±39.25 46.50±16.80 100.76±48.12 48.59±17.20 128.47±52.54 40.26±14.38

Num. of sentences 8.92±4.73 7.48±3.42 9.03±5.21 7.77±3.91 12.51±6.60 10.34±3.81

Sentence length 12.57±4.53 6.92±2.91 13.59±10.53 6.90±2.30 11.16±2.86 3.97±0.88

KMRE ↑ 91.03±8.67 99.71±9.43 89.50±13.49 100.59±10.30 97.02±5.48 103.67±10.71

Compression (%) 49.04±20.12 44.47±22.10 65.19±14.18

Novelty (%) 53.79±16.32 52.96±16.24 55.01±14.80

Table 3. Performance metrics for expert-centric and fine-tuned models on the ETR-fr test set (FT stands for full fine-tuning and PT for prefix-tuning).
BARThez∗ refers to BARThez PLM finetuned on OrangeSum [17] dataset. Results are reported as average with standard deviation over 5 runs except for the

pipelines. The best scores are highlighted in bold, except for novelty and compression rate, where scores closest to the values reported for the test split in Table
2 are emphasized in bold.

ROUGE-1 ROUGE-2 ROUGE-L BERT-F1 SARI KMRE Comp. ratio Novelty

Expert-centric

BARThez∗ 22.85 5.30 15.28 67.54 36.87 95.26 73.38 30.17

MUSS 28.11 8.87 18.54 70.92 36.48 98.03 6.62 15.00

BARThez∗ +MUSS 22.42 4.48 14.64 67.58 36.70 96.70 75.61 36.51

MUSS+BARThez∗ 20.15 5.36 13.58 66.85 37.56 93.74 75.62 37.48

Fine-Tuning

Mistral-7B
PT 23.78±12.03 8.33±4.70 16.90±8.20 64.44±15.14 38.21±1.36 98.99±0.80 30.88±18.92 6.20±5.18

LoRA 30.53±0.52 11.75±0.58 23.10±0.54 72.51±0.23 42.27±0.70 102.84±0.35 39.87±3.53 20.17±1.30

Llama-2-7B
PT 26.52±1.82 10.00±0.96 19.97±1.17 69.69±0.80 41.18±0.58 101.90±1.08 32.45±2.33 18.82±2.16

LoRA 26.70±1.07 10.11±0.50 20.53±0.76 69.79±0.54 41.18±0.34 102.31±0.52 40.01±4.08 40.01±4.08

mBART

FT 24.07±0.07 6.57±0.01 16.41±0.03 68.66±0.00 35.57±0.00 97.21±0.00 56.10±0.00 1.68±0.00

PT 29.22±0.47 8.96±0.80 20.46±0.70 72.48±0.31 41.01±0.26 103.88±1.29 56.95±3.16 27.35±4.86

LoRA 29.60±1.01 10.22±0.79 21.44±0.66 72.38±0.96 41.18±0.50 103.94±1.35 61.34±1.77 19.40±4.61

mBARThez

FT 16.47±0.01 5.28±0.02 13.08±0.05 65.96±0.00 34.7±0.00 96.95±0.00 76.12±0.00 11.02±0.00

PT 32.46±0.74 11.36±0.38 22.62±0.60 73.57±0.18 41.79±0.77 104.17±0.19 59.61±1.52 20.26±2.39

LoRA 32.88±0.29 11.81±0.31 23.10±0.29 73.73±0.14 41.48±0.34 104.21±0.20 56.52±0.80 16.89±1.40

In particular, prefix-tuning modifies the attention output in each231

Transformer [40] layer. Let d represent the hidden state dimension232

and L the number of layers. For the l-th layer, the query, key, and233

value matrices are Ql ∈ RN×d and Kl, Vl ∈ RM×d, where N is the234

number of query tokens and M the number of key/value tokens. For235

each attention type (encoder self-attention, decoder cross-attention,236

decoder self-attention), a distinct prefix of key-value pairs is learned,237

P = {P1, . . . , PL}, where Pl ∈ Rρ×2d and ρ is the prefix length.238

For the l-th layer, Kl and Vl are augmented as in equation 1 where239

K′
l , V

′
l ∈ R(ρ+M)×d.240

K′
l = [Pl,K ;Kl] , V

′
l = [Pl,V ;Vl] (1)

Additionally, prefix optimization is stabilized by increasing the num-241

ber of trainable parameters. This is done by introducing a distinct242

two-layer feed-forward network with an intermediate dimension of243

k, dedicated to re-parameterize the prefix for each attention type.244

The full prefix, parameterized by θ, is Pθ = {PE , PDc, PDs} ∈245

Rρ×6dL.246

h = W0x+
α

r
BAx (2)

Low-rank adaptation fine-tuning (LoRA) provides an alternative 247

by approximating full fine-tuning through a low-rank decomposition 248

of weight matrices in the model. Specifically, it decomposes a weight 249

matrix W0 ∈ Rd×k into two smaller matrices, B ∈ Rd×r and A ∈ 250

Rr×k, where r ≪ min(d, k). This low-rank approximation is further 251

scaled by a factor α to modulate the update contribution, ensuring 252

that the changes remain low-rank while maintaining the backbone’s 253

integrity as defined in Equation 2. 254

LoRA can be applied to each linear layer in the Transformer archi- 255

tecture, such as WQ,WK ,WV ,WO matrices projections in the at- 256

tention layers. 257

5.3 Evaluation Metrics 258

Since no dedicated evaluation metrics exist for ETR generation, we 259

propose assessing it using standard summarization and text simplifi- 260

cation metrics. For summarization, we report F1-scores for ROUGE- 261

1, ROUGE-2, and ROUGE-L [25], along with BERTScore [44]. For 262
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simplification, we include SARI [42], Kandel-Moles Readability Es-263

timate (KMRE) [18], and novelty ratio for unigrams [17]. BLEU is264

excluded, as it is unsuitable for text simplification [42].265

5.4 Experimental Setup266

All PLMs are trained for 30 epochs, while LLMs are trained for267

5 epochs, using the AdamW optimizer [28] with the following268

parameters: ϵ = 10−9, β1 = 0.9, β2 = 0.999, and a weight269

decay of λ = 0.01. A linear learning rate scheduler with a 10%270

warm-up ratio is employed. The training batch size is fixed at 8,271

with no gradient accumulation. The learning rate is chosen from the272

set {1 · 10−5, 2 · 10−5, 5 · 10−5, 1 · 10−4}, and hyperparameter273

tuning for prefix-tuning and LoRA is performed to maximize274

the harmonic mean of SARI, ROUGE-L, and BERTScore. Each275

best model is selected following hyperparameters search policy276

using grid search. In particular for prefix-tuning, we explore277

prefix length ρ ∈ {10, 50, 150, 250, 500} and parametrization278

Multilayer Perceptron hidden layer h ∈ {256, 512, 1024, 2048}.279

For LoRA, we explore r ∈ {8, 16, 32, 64, 128}, dropout ∈280

{0.0, 0.05, 0.1}, and which matrices to adapt for the self-281

attention and cross-attention layers attn_matrices ∈282

{WQ,WK ,WV ,WO,WQK ,WQV ,WKV ,WQKV O}. More-283

over, we choose α = r to keep a 1:1 ratio so as not to overpower the284

backbone [21].285

For evaluation, generation performance results are averaged over286

five runs, distinguishing our approach from most text generation287

studies that typically report results from a single run or fixed seed288

[23, 32]. The expert-centric model is the only one evaluated in a zero-289

shot setting.290

6 Quantitative and Qualitative Results291

To rigorously evaluate the various ETR generation models, we pro-292

pose a dual approach: a quantitative evaluation using both in-domain293

and out-of-domain test sets, and a qualitative assessment through294

manual evaluation by linguist-experts, based on 36 questions from295

the European ETR guidelines.296

6.1 In-Domain Quantitative Results297

Table 3 presents the evaluation metrics for all ETR generation mod-298

els on the ETR-fr test set. Among the expert-centric pipelines, the299

MUSS model achieves the highest ROUGE-1 (28.11) and ROUGE-300

2 (8.87) scores but has the lowest compression ratio (6.62) and301

novelty (15.00), indicating a more conservative summarization ap-302

proach. The model alone demonstrates moderate performance with a303

ROUGE-1 score of 22.85, while expert-centric combinations strike a304

balance between novelty and compression.305

For fine-tuned models, PEFT methods outperform full fine-tuning,306

aligning with the findings of [41]. Mistral-7B with LoRA achieves307

strong results, with ROUGE-L (23.10), SARI (42.27), and novelty308

(20.17). Llama-2-7B, in both prefix-tuning and LoRA configurations,309

delivers competitive performance, with ROUGE-L scores of 19.97310

and 20.53, respectively. Notably, Llama-2-7B with LoRA achieves311

the highest novelty score (40.01).312

Among the fine-tuned models, mBART with LoRA exhibits the313

best compression ratio (61.34) (closest to the test split compression314

ratio), while maintaining strong ROUGE-1 (29.60) and ROUGE-2315

(10.22) scores. The frugal mBARThez with LoRA achieves the best316

overall performance, with the highest ROUGE-1 (32.88), ROUGE- 317

2 (11.81), ROUGE-L (23.10), BERTScore (73.73), and KMRE 318

(104.21). Interestingly, prefix-tuning delivers results comparable to 319

LoRA across both PLMs and LLMs. 320

6.2 Out-of-Domain Quantitative Results 321

The participation of persons with disabilities in political and public 322

life is guaranteed by the United Nations Convention on the Rights 323

of Persons with Disabilities, ratified by France. Since 2021, candi- 324

dates for the French presidential election, as well as candidates for 325

the legislative and regional elections, must now submit an ETR ver- 326

sion of their electoral programme. In order to evaluate the robustness 327

of the ETR models and their abilities to generalize across diverse and 328

seemingly unrelated domains, we propose to test the different ETR 329

models on a test set exclusively focused on political elections. Note 330

that none of these text genre is including in the training phase as we 331

only focus on ETR versions of children’s books. Political texts were 332

not included in the training process, as their alignment with European 333

ETR guidelines is not guaranteed. However, they serve as a crucial 334

test configuration. 335

For this purpose, the out-of-domain test set consists of 33 ran- 336

domly selected ETR-aligned paragraphs from the 2022 French pres- 337

idential election programs8. Table 5 provides details about the char- 338

acteristics of the political test set (ETR-politic). When compared to 339

the ETR-fr test set, the ETR-politic dataset shows several notable 340

differences. The ETR-fr test set includes more texts (53 vs. 33) and 341

its source texts are longer in both word count (128.47 vs. 96.27) and 342

sentence count (12.51 vs. 6.42). However, its target texts are signif- 343

icantly shorter, averaging 40.26 words compared to 62.85 words in 344

ETR-politic. The source and target texts in ETR-fr are simpler, as 345

indicated by higher KMRE (97.02 vs. 75.03 for the source, 103.67 346

vs. 88.12 for the target). Additionally, the ETR-fr has a higher com- 347

pression ratio (65.19 vs. 29.17) and lower novelty (55.01 vs. 63.78) 348

compared to ETR-politic. In summary, the ETR-fr test set contains 349

longer, simpler source texts and more concise target texts, whereas 350

the ETR-politic test set introduces more novel content. 351

Table 4 illustrates the performance of fine-tuned models on ETR- 352

fr when evaluated on ETR-politic. Similarly to results in §6.1, 353

mBARThez achieves the highest scores across most metrics, par- 354

ticularly with the LoRA configuration. It records the top ROUGE-1 355

(38.12), ROUGE-2 (14.73), and ROUGE-L (28.11), along with the 356

highest BERTScore (71.31) and a strong SARI score (40.35). Over- 357

all, LoRA emerges as the superior fine-tuning strategy, consistently 358

yielding higher performance across all models compared to prefix- 359

tuning. Additionally, the lower standard deviations associated with 360

LoRA, especially for Mistral-7B and mBARThez, underline their 361

stability. However, the analysis reveals that LLMs exhibit a negative 362

compression rate, indicating challenges in replicating summarization 363

behavior effectively. 364

6.3 Manual Qualitative Results 365

Manual evaluation is essential for assessing the quality of ETR text 366

production and compliance with European ETR guidelines. These 367

guidelines consist of 57 questions categorized by topic and weighted 368

by importance, forming a comprehensive framework for evaluating 369

clarity, simplicity, and accessibility9. By following these standards, 370

8 https://www.cnccep.fr/candidats.html
9 https://www.unapei.org/wp-content/uploads/2020/01/liste_

verification-falc-score_v2020-01-14-1.xlsx

6



Table 4. Performance metrics, for fine-tuned models on ETR-fr, tested on the ETR-politic test set. Results are reported as average with standard deviation
over 5 runs. The best scores are highlighted in bold.

ROUGE-1 ROUGE-2 ROUGE-L BERT-F1 SARI KMRE Comp. ratio Novelty

Mistral-7B
PT 22.56±11.68 7.92±4.56 16.95±8.45 63.29±9.14 36.71±1.22 80.34±3.89 −9.53±18.26 12.77±9.08

LoRA 33.16±1.34 12.04±0.84 25.0±0.92 69.45±0.53 39.39±0.4 79.66±0.39 7.9±4.6 15.33±1.98

Llama-2-7B
PT 24.64±3.04 8.9±1.42 19.44±2.03 65.35±1.46 37.74±2.17 81.89±1.01 −20.17±19.57 22.54±3.44

LoRA 27.79±0.75 11.03±0.18 21.24±0.35 66.83±0.37 39.14±0.15 73.49±0.98 −9.22±4.44 15.41±0.94

mBART
PT 28.58±0.79 9.72±1.42 21.2±1.6 67.94±0.49 40.42±0.77 86.98±1.73 46.24±3.13 39.03±6.68

LoRA 31.72±1.57 10.61±1.05 24.07±0.95 69.05±1.25 39.78±0.81 85.82±1.61 41.92±2.06 34.31±2.34

mBARThez
PT 36.79±0.68 14.43±0.72 26.95±0.65 71.11±0.35 39.23±0.6 81.92±0.8 37.86±2.43 12.58±3.57

LoRA 38.12±0.32 14.73±0.67 28.11±0.4 71.31±0.32 40.35±0.37 81.58±0.5 35.37±1.3 16.74±2.2

Table 5. Statistics of the political test dataset. Results are given on average
with corresponding standard deviation over documents.

ETR-politic Test Set

source target

Num. of texts 33

Num. of words 96.27±56.34 62.85±30.04

Num. of sentences 6.42±3.17 6.09±2.87

Sentence length 15.68±6.32 11.47±7.21

KMRE ↑ 75.03±11.15 88.12±11.34

Compression ratio (%) 29.17±22.48

Novelty (%) 63.78±13.85

the evaluation process ensures linguistic accuracy while also verify-371

ing that the texts meet cognitive requirements, making them under-372

standable, engaging, and suitable for the target audience.373

To validate our approach, we conduct a human evaluation with374

three linguist-experts10 across the ETR-fr and ETR-politic test sets.375

The assessment begins by focusing on the most critical criteria from376

the ETR guidelines checklist, including Information Choices (IC),377

Sentence Construction (SC), Word Choice (WC), and Illustrations11,378

and consisting of 28 individual questions. Additionally, we evaluate379

general criteria commonly used in automatic text generation, such380

as Fluency, Grammar/Spelling, Relevance, Textual Coherence, and381

Overall Perceived Quality, gathered in extra 8 individual questions.382

ETR criteria are assessed using a binary scale (respected, not re-383

spected), while human judgments are rated on a 5-point Likert scale384

(0–4).385

For each model, annotators were assigned to evaluate 20 texts386

from ETR-fr and 10 from ETR-politic randomly sampled. All an-387

notators assessed the same set of texts, ensuring consistency in the388

evaluation process across models and datasets. The averaged inter-389

annotator agreement over the 36 criteria is α = 0.0712 [20].390

Figure 2(a) presents the results of the ETR guidelines-based eval-391

uation for the two best competing models: mBARThez+LoRA and392

Mistral-7B+LoRA. Unlike the automatic evaluation, the manual as-393

sessment shows that Mistral-7B+LoRA achieves the highest scores394

for IC and WC, while mBARThez+LoRA excels in SC on the ETR-395

10 The linguist-experts are second-year Master’s students in Language Stud-
ies. They underwent dedicated training sessions to prepare for the evalu-
ation task. Additionally, they were unaware of the model development to
ensure unbiased assessments.

11 Results for Illustrations are not presented, as this criterion was not appli-
cable to most of the evaluated texts.

12 It reaches 0.20 for a binarized aggregated scores.
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Figure 2. Manual evaluation comparisons. (a) Assessments from 28 ETR
guidelines questions grouped into three categories. (b) Assessments from 8

text generation questions grouped into five categories.

fr test set. Interestingly, the trend is almost reversed on ETR-politic, 396

where mBARThez+LoRA scores highest for IC and performs com- 397

parably to Mistral-7B+LoRA for WC and SC. Additionally, for both 398

test sets, the frugal model exhibits the lowest dispersion score, indi- 399

cating greater stability in generation. 400

Figure 2(b) presents the manual evaluation results for text gen- 401

eration quality and accuracy. Similar to the ETR-based assessment, 402

Mistral-7B+LoRA achieves highest scores for most criteria on the 403

ETR-fr test set, though mBARThez+LoRA performs equally well in 404
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Fluency. However, the trend shifts significantly in the out-of-domain405

setting, where mBARThez+LoRA emerges as the top-performing406

model for Overall Perceived Quality and Fluency.407

In summary, Mistral-7B+LoRA appears to overfit on ETR-fr,408

while mBARThez+LoRA demonstrates better generalization for409

ETR generation, achieving highest results on ETR-politic while410

maintaining strong performance on ETR-fr.411

7 Limitations and Perspectives412

The automatic evaluation of text generation models remains an open413

issue [15]. We argue that specific metrics should be developed for414

ETR generation, considering aspects such as novelty ratio, repeti-415

tion, and coherence. Indeed, evaluation metrics for summarization416

and text simplification do not capture all characteristics of ETR gen-417

eration, even when combined into a unique score as used in this work.418

Given the limitations of automatic evaluation, manual evalua-419

tion has been performed as it is known to be a good indicator of420

generation capacities [22]. However, it still suffers from key draw-421

backs [19]. We hypothesize that the low inter-annotator agreement422

score presented in §6.3 is due to the fact that the ETR criteria are rel-423

atively abstract [5], which may lead to increased subjectivity in their424

interpretation. This variability could be mitigated through better for-425

malization of the criteria or a comprehensive annotator training with426

disabled users.427

While our dataset is limited in size, cross-lingual transfer re-428

mains particularly challenging due to the lack of data in other lan-429

guages, especially in English. Additionally, [32] demonstrates that430

the translate-simplify-retranslate strategy is ineffective for ETR, of-431

ten resulting in incorrect outputs. Using data from other languages432

also necessitates a rigorous, manual translation process involving na-433

tive speakers to ensure accessibility, which restricts scalability. Al-434

though developing a multilingual model could alleviate this issue, it435

would still require a large-scale protocol for manual ETR transcrip-436

tion to create reliable resources in English.437

Reinforcement learning from human feedback (RLHF) [36] could438

further refine ETR generation by aligning model outputs with user439

preferences. Collecting high-quality preference data from both ex-440

pert writers and cognitively disabled users is essential to train reward441

models that guide language models optimization. This process would442

involve curated annotation tasks where users rank generated texts443

based on clarity, accessibility, and engagement. Expanding RLHF444

data collection across languages and cognitive conditions would en-445

sure that models generate texts that are both contextually appropriate446

and widely usable. Moreover, this process could be a step toward447

automating the acquisition of the European ETR label.448

8 Conclusion449

This paper addresses ETR text generation for cognitively impaired450

individuals, aiming to enhance their self-determination and auton-451

omy by bridging the digital divide. To support this objective, we in-452

troduced the ETR-fr dataset, a set of 523 pairs of ETR-aligned texts,453

and conducted an extensive empirical study using multilingual PLMs454

and LLMs. Our findings show that ETR generation differs signifi-455

cantly from traditional text simplification and summarization tasks,456

requiring a focused approach on cognitive accessibility. Remarkably,457

the small mBARThez model, combined with LoRA tuning, performs458

on par with larger LLMs, achieving the best results in ROUGE and459

BERT scores, as well as highly competitive indicators for simplifica-460

tion assessment, across both in-domain and out-of-domain settings.461

The manual evaluation conducted by three linguist-experts also high- 462

lights that the LLM-based approach tends to overfit to the main task, 463

whereas the frugal approach exhibits better generalization, achieving 464

the highest results on the political domain test set while maintaining 465

strong performance on the original task. 466
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R1/Dataset Scale Requirements: Despite promising results with 659

ETR-fr, the ideal dataset should contain as much text as possible, but 660

more importantly, it should be diverse and cover multiple domains, 661

genres, and languages to meet the needs of cognitively impaired read- 662

ers. It should also adhere to ETR guidelines and maintain alignment 663

between source and simplified text. However, creating such datasets 664

remains challenging due to the manual, collaborative, with cogni- 665

tively impaired, nature of ETR-compliant content creation. As dis- 666

cussed in the paper (lignes), the ClearText project[8] attempted to 667

build a large Spanish ETR corpus but publicly released only a few 668

aligned pairs and the project has stopped. 669

R1/Experiment with Cognitively Impaired Participants: We are or- 670

ganizing evaluation workshops with ETR experts and partner orga- 671

nizations specializing in inclusive transcription. We developed an 672

accessible web application that enables users to validate ETR out- 673

puts and provide structured feedback. This feedback is gathered us- 674

ing inclusive co-evaluation methods based on ETR practices. A non- 675

impaired transcription partner asks open-ended questions to the tar- 676

get audience to assess their understanding of the text. These ses- 677

sions assess the alignment of generated texts with ETR principles 678

and support dataset expansion through annotation of both successful 679

and problematic outputs. This data can also inform Reinforcement 680

Learning from Human Feedback to improve personalization and ac- 681
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cessibility. This evaluation was not conducted for this paper due to682

logistical and financial constraints.683

R2/PLMs, LLMs, and Frugal Backbones: Our terminology684

aligns with standard NLP usage. Pre-trained Language Models685

(PLMs) are general-purpose models trained on large corpora, typ-686

ically with fewer than one billion parameters. Examples include687

BART, and T5. Large Language Models (LLMs), such as Mis-688

tral, and Llama, are larger generative models designed for open-689

ended tasks. LLMs can be considered a subset of PLMs, see:690

https://arxiv.org/pdf/2406.11289. We use the term “frugal back-691

bones” to describe PLMs with significantly fewer parameters and692

reduced computational demands than LLMs. This reflects the real-693

ities of organizations that serve people with cognitive impairments,694

many of which have limited funding and infrastructure.695

R2/KMRE-LIX: These two methods are language-independent696

and consider sentence length and word complexity (length, number697

of syllables). KMRE[18] is a French-specific metric based on adap-698

tations of the weights of Flesch-Kincaid Reading Ease formula and699

LIX[2] is a language independent metric. We use them to quantify the700

readability improvements between original and ETR-versions (see701

§4,tab.1). We plan to include the exact formulas if space permits in702

the final version.703

R2,R3/Expert-Centric Pipeline: Our expert-centric pipeline is a704

baseline inspired by observed manual transcription practices (§5.1),705

introduced due to the absence of existing ETR benchmarks. None of706

its components were fine-tuned on ETR-fr. This allows us to eval-707

uate how task-specific models, such as BARThez (summarization)708

and MUSS (simplification), perform on ETR without adaptation.709

If such pipeline had outperformed ETR-specific fine-tuned models,710

they could have offered a cost-efficient alternative for accessibility711

contexts. The reviewer mention a very interesting point. Indeed we712

investigated hybrid multitask learning strategies that address sum-713

marization, simplification, and ETR rewriting together. In particular,714

we implemented the MTL-LoRA (https://arxiv.org/abs/2410.09437)715

with the three tasks. But results are below than monotask variant:716

|Models |ROUGE-1|ROUGE-2|ROUGE-L|BERTScore-F1|SARI717

|Compression-Ratio|Novelty| |—————–|——-|——-|——-|——718

——|—–|—————–|——-| |mBARThez+LoRA |32.88 |11.81719

|23.10 |73.73 |41.48|56.52 |16.89 | |mBARThez+MTL-LoRA|33.01720

|11.37 |22.97 |73.68 |39.94|50.10 |8.69 |721

R3/Dataset Construction and Certification: Our role was limited to722

extracting the book content in accordance with the publisher’s agree-723

ment. Each ETR book from François Baudez Publishing presents724

original text and its ETR version on facing pages, ensuring proper725

alignment. After automatic extraction, we manually verified all pairs726

for accuracy. The books follow strict ETR transcription protocols and727

involve individuals with intellectual disabilities in proofreading, en-728

abling them to carry the ETR label[37]. Since our dataset is directly729

derived from these labeled, unmodified texts, we consider it certified.730

R3/Generalization from a Single Out-of-Domain Dataset: We rec-731

ognize that the term “generalization” may overstate findings based732

on one out-of-domain dataset. The current evaluation is limited by733

the lack of a broader ETR benchmark. Even if such a benchmark734

existed in another language, automatic translation would not suffice,735

as ETR requires specialized transcription sessions involving people736

with intellectual disabilities. Nonetheless, our results are promising.737

The mBARThez+LoRA model, although trained only on children’s738

literature (ETR-fr), performs well on the ETR-politic test set. It out-739

performs larger LLMs in both automatic (Table 4) and manual evalu-740

ations (Figure 2). Notably, its scores are comparable across domains:741

ROUGE-L of 23.10 and BERTScore of 73.73 on ETR-fr, versus742

28.11 and 71.31 on ETR-politic. As mentioned earlier, our ongoing 743

platform development and planned manual evaluations with cogni- 744

tively impaired users will help build a broader evaluation dataset to 745

better assess generalization capabilities. 746

R3/Manual Evaluation Reliability: As shown by Bayerl and Paul 747

(https://aclanthology.org/J11-4004/), the inter-annotator agreement 748

(IAA) tends to decrease as the number of categories increases by 749

construction. So, the low agreement is attributed to the very large 750

number of criteria (>30) that had to be evaluated by the coders. Note 751

that we are the first work to include IAA for ETR generation. Al- 752

though the evaluators are not ETR specialists, they were trained in 753

ETR and in applying the evaluation criteria by a subject-matter ex- 754

pert. Nevertheless, we recognize that this process can be improved, 755

as discussed in §1,2 of the "Limitations" section. 756

R3/Model Parameter Count and Training Cost: We did not in- 757

clude detailed analysis on the impact of parameter count on perfor- 758

mance due to space constraints, though such content could be added 759

as an appendix. Our results indicate that in parameter-efficient fine- 760

tuning (PEFT), performance improves with larger LoRA ranks and 761

full adaptation of attention matrices (WQ,WK,WV,WO). In prefix 762

tuning, short prefixes and large bottlenecks yield better results. Over- 763

all, performance tends to increase with the number of trained param- 764

eters. 765
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